Uncovering universal physics in the dynamics of a quantum system

New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium. A team of physicists at Penn State showed that these gases immediately respond, "evolving" with features that are common to all "many-body" quantum systems thrown out of equilibrium in this way. A paper describing the experiments appears May 17, 2023 in the journal Nature.

Uncovering universal physics in the dynamics of a quantum system
New experiments using one-dimensional gases of ultra-cold atoms reveal a universality in how quantum systems composed of many particles change over time following a large influx of energy that throws the system out of equilibrium. A team of physicists at Penn State showed that these gases immediately respond, "evolving" with features that are common to all "many-body" quantum systems thrown out of equilibrium in this way. A paper describing the experiments appears May 17, 2023 in the journal Nature.